1,657 research outputs found

    A concept of water usage efficiency to support water reduction in manufacturing industry

    Get PDF
    Increasing pressures on freshwater supplies, continuity of supply uncertainties, and costs linked to legislative compliance, such as for wastewater treatment, are driving water use reduction up the agenda of manufacturing businesses. A survey is presented of current analysis methods and tools generally available to industry to analyze environmental impact of, and to manage, water use. These include life cycle analysis, water footprinting, strategic planning, water auditing, and process integration. It is identified that the methods surveyed do not provide insight into the operational requirements from individual process steps for water, instead taking such requirements as a given. We argue that such understanding is required for a proactive approach to long-term water usage reduction, in which sustainability is taken into account at the design stage for both process and product. As a first step to achieving this, we propose a concept of water usage efficiency which can be used to evaluate current and proposed processes and products. Three measures of efficiency are defined, supported by a framework of a detailed categorization and representation of water flows within a production system. The calculation of the efficiency measures is illustrated using the example of a tomato sauce production line. Finally, the elements required to create a useable tool based on the efficiency measures are discussed

    Revisiting the STEC Testing Approach: Using espK and espV to Make Enterohemorrhagic Escherichia coli (EHEC) Detection More Reliable in Beef

    Get PDF
    Current methods for screening Enterohemorrhagic Escherichia coli (EHEC) O157 and non-O157 in beef enrichments typically rely on the molecular detection of stx, eae, and serogroup-specific wzx or wzy gene fragments. As these genetic markers can also be found in some non-EHEC strains, a number of “false positive” results are obtained. Here, we explore the suitability of five novel molecular markers, espK, espV, ureD, Z2098, and CRISPRO26:H11 as candidates for a more accurate screening of EHEC strains of greater clinical significance in industrialized countries. Of the 1739 beef enrichments tested, 180 were positive for both stx and eae genes. Ninety (50%) of these tested negative for espK, espV, ureD, and Z2098, but 12 out of these negative samples were positive for the CRISPRO26:H11 gene marker specific for a newly emerging virulent EHEC O26:H11 French clone. We show that screening for stx, eae, espK, and espV, in association with the CRISPRO26:H11 marker is a better approach to narrow down the EHEC screening step in beef enrichments. The number of potentially positive samples was reduced by 48.88% by means of this alternative strategy compared to the European and American reference methods, thus substantially improving the discriminatory power of EHEC screening systems. This approach is in line with the EFSA (European Food Safety Authority) opinion on pathogenic STEC published in 2013

    Revisiting the STEC Testing Approach: Using espK and espV to Make Enterohemorrhagic Escherichia coli (EHEC) Detection More Reliable in Beef

    Get PDF
    Current methods for screening Enterohemorrhagic Escherichia coli (EHEC) O157 and non-O157 in beef enrichments typically rely on the molecular detection of stx, eae, and serogroup-specific wzx or wzy gene fragments. As these genetic markers can also be found in some non-EHEC strains, a number of “false positive” results are obtained. Here, we explore the suitability of five novel molecular markers, espK, espV, ureD, Z2098, and CRISPRO26:H11 as candidates for a more accurate screening of EHEC strains of greater clinical significance in industrialized countries. Of the 1739 beef enrichments tested, 180 were positive for both stx and eae genes. Ninety (50%) of these tested negative for espK, espV, ureD, and Z2098, but 12 out of these negative samples were positive for the CRISPRO26:H11 gene marker specific for a newly emerging virulent EHEC O26:H11 French clone. We show that screening for stx, eae, espK, and espV, in association with the CRISPRO26:H11 marker is a better approach to narrow down the EHEC screening step in beef enrichments. The number of potentially positive samples was reduced by 48.88% by means of this alternative strategy compared to the European and American reference methods, thus substantially improving the discriminatory power of EHEC screening systems. This approach is in line with the EFSA (European Food Safety Authority) opinion on pathogenic STEC published in 2013

    Bandwidth considerations in modulated and transient photoconductivity measurements to determine localized state distributions

    Get PDF
    This work examines the influence of limited instrumental bandwidth on the accuracy of recovery of the density of localized states in semiconductors from transient and modulated photoconductivity data. Paradoxically, knowledge of the short-time transient photoresponse can be vital in the estimation, via a Fourier transform, of the density of deep-lying states. We demonstrate that retention of the natural response of a bandwidth limited system, although subject to distortion at short times, can lead to much improved accuracy in density of states determination than simple truncation of the short-time response. It is shown that this improvement arises simply from the integrating effect of a bandwidth limited system over short time intervals, which makes it possible to access and exploit information originating at times much shorter than the instrumentation rise time. These concepts are exemplified using computer simulated transient photoconductivity for several model systems including one which mimics the expected density of states in amorphous silicon

    Capability evaluation of real-time inline COD detection technique for dynamic water footprint management in the beverage manufacturing industry

    Get PDF
    This paper reports the development of a real-time inline Chemical Oxygen Demand (COD) detection technique in a beverage manufacturing plant in England and the evaluation of its capability for dynamic Water Footprint (WF) management. The inline technique employed Ultraviolet–Visible (UV-VIS) spectroscopy and Moving Window Partial Least Squares (mwPLS), which was then applied to calculating Grey WF for the production activities in the plant, referred to here as WFrt. A traditional offline COD measurement method was also utilised for the Grey WF calculation, to act as the reference method, referred to here as WFtrad. In a method-comparison study (Bland-Altman Plot), the results showed that WFrt detected the order of magnitude variation of WFtrad, and WFtrad was on average between 0.897 and 1.243 times WFrt with no systematic bias. This indicates that WFrt may be used for both short-time frame (minutes to hours) WF monitoring and long-term (weeks to months) analysis of trends and the effect of WF optimisation strategies

    The use of areal surface texture parameters to characterize the mechanical bond strength of copper on glass plating applications

    Get PDF
    This report describe research into the role that surface topography plays in influencing the mechanical bond strength of the electroless copper plating of novel glass substrates. The work considers bespoke laser machining of glass substrates, electroless plating chemistry, areal surface topography analysis using non-contact optical techniques, paramaterization of the surfaces using ISO 25178 areal parameters, and scratch testing of plated copper to measure the adhesive bond strength. By correlating bond strength to appropriate areal parameters, it is anticipated that better mechanical adhesive potential of machined glass surfaces can be achieved

    Effects of bandwidth limitations on the localized state distribution calculated from transient photoconductivity data

    Get PDF
    The possible effects of experimental bandwidth limitation on the accuracy of the energy distribution of the density of localized states (DOS) calculated from transient photoconductivity data by the Fourier transform method is examined. An argument concerning the size of missing contributions to the numerical Fourier integrals is developed. It is shown that the degree of distortion is not necessarily large even for relatively small experimental bandwidths. The density of states calculated from transient photodecay measurements in amorphous arsenic triselenide is validated by comparing with modulated photocurrent data. It is pointed out that DOS distributions calculated from transient photoconductivity data at a high photoexcitation density are valid under certain conditions. This argument is used to probe the conduction band tail in undoped a-Si:H to energies shallower than 0.1 eV below the mobility edge. It is concluded that there is a deviation in the DOS from exponential at about 0.15 eV below the mobility edge

    Study of self-alignment of ÎĽBGA packages

    Get PDF
    In this paper, a detailed study of the self-alignment of BGA packages is presented. Complete self-alignment can be achieved even for a misalignment of the package of larger than 50% off the test board pad centres. A small residual displacement of the package from perfect alignment after reflow is observed. The reason for this displacement is the action of gas flow viscous drag on the package during reflow. The use of eutectic SnPb solder paste slightly reduces self-aligning ability, due to the increase in the solder volume, which reduces the restoring force. Exposure of the solder paste to a 25 C and 85% RH humidity environment also has a detrimental effect on the self-alignment of the BGA package, due to solvent evaporation and moisture absorption in the paste causing solderability degradation. The self-alignment of the package is also affected when there is slow spreading of molten solder on the pad surface. This is attributed to the reduction of restoring force due to the decrease in effective wetting surface area of the board pad

    Assessing infant cognition in field settings using eye-tracking: A pilot cohort trial in Sierra Leone

    Get PDF
    OBJECTIVES: To investigate the feasibility of eye-tracking-based testing of the speed of visual orienting in malnourished young children at rural clinics in Sierra Leone. DESIGN: Prospective dual cohort study nested in a cluster-randomised trial. SETTING: 8 sites participating in a cluster-randomised trial of supplementary feeding for moderate acute malnutrition (MAM). PARTICIPANTS: For the MAM cohort, all infants aged 7-11 months at the eight sites were enrolled, 138 altogether. For controls, a convenience sample of all non-malnourished infants aged 7-11 months at the same sites were eligible, 60 altogether. A sample of 30 adults at the sites also underwent eye-tracking tests as a further control. INTERVENTIONS: Infants with MAM were provided with supplementary feeding. OUTCOME MEASURES: The primary outcomes were feasibility and reliability of eye-tracking-based testing of saccadic reaction time (SRT). Feasibility was assessed by the percent of successful tests in the infants. Reliability was measured with intraclass correlation coefficients (ICCs). Secondary outcomes were mean SRT based on nutritional state as well as and changes in mean SRT after supplementary feeding of MAM children. RESULTS: Infants exhibited consistent orienting to targets on a computer screen (\u3e95% of valid trials). Mean SRTs had moderate stability within visits (ICCs 0.60-0.69) and across the 4-week test-retest interval (0.53) in infants; the adult control group had greater SRT stability (within visit ICC=0.92). MAM infants had a trend toward higher adjusted SRT at baseline (difference=12.4 ms, 95% CI -2 to 26.9, p=0.09) and improvement in SRT 4 weeks thereafter (difference=-14 ms, 95% CI -26.2 to -1.7, p=0.025) compared with age-matched controls. CONCLUSIONS: The results demonstrate the feasibility of eye-tracking-based testing in a resource-poor field setting and suggest eye-tracking measures have utility in the detection of group level effects of supplementary feeding

    Constraining fundamental constants of physics with quasar absorption line systems

    Full text link
    We summarize the attempts by our group and others to derive constraints on variations of fundamental constants over cosmic time using quasar absorption lines. Most upper limits reside in the range 0.5-1.5x10-5 at the 3sigma level over a redshift range of approximately 0.5-2.5 for the fine-structure constant, alpha, the proton-to-electron mass ratio, mu, and a combination of the proton gyromagnetic factor and the two previous constants, gp(alpha^2/mu)^nu, for only one claimed variation of alpha. It is therefore very important to perform new measurements to improve the sensitivity of the numerous methods to at least <0.1x10-5 which should be possible in the next few years. Future instrumentations on ELTs in the optical and/or ALMA, EVLA and SKA pathfinders in the radio will undoutedly boost this field by allowing to reach much better signal-to-noise ratios at higher spectral resolution and to perform measurements on molecules in the ISM of high redshift galaxies.Comment: 11 pages, 3 figure
    • …
    corecore